305 research outputs found

    The Fast Heuristic Algorithms and Post-Processing Techniques to Design Large and Low-Cost Communication Networks

    Full text link
    It is challenging to design large and low-cost communication networks. In this paper, we formulate this challenge as the prize-collecting Steiner Tree Problem (PCSTP). The objective is to minimize the costs of transmission routes and the disconnected monetary or informational profits. Initially, we note that the PCSTP is MAX SNP-hard. Then, we propose some post-processing techniques to improve suboptimal solutions to PCSTP. Based on these techniques, we propose two fast heuristic algorithms: the first one is a quasilinear time heuristic algorithm that is faster and consumes less memory than other algorithms; and the second one is an improvement of a stateof-the-art polynomial time heuristic algorithm that can find high-quality solutions at a speed that is only inferior to the first one. We demonstrate the competitiveness of our heuristic algorithms by comparing them with the state-of-the-art ones on the largest existing benchmark instances (169 800 vertices and 338 551 edges). Moreover, we generate new instances that are even larger (1 000 000 vertices and 10 000 000 edges) to further demonstrate their advantages in large networks. The state-ofthe-art algorithms are too slow to find high-quality solutions for instances of this size, whereas our new heuristic algorithms can do this in around 6 to 45s on a personal computer. Ultimately, we apply our post-processing techniques to update the bestknown solution for a notoriously difficult benchmark instance to show that they can improve near-optimal solutions to PCSTP. In conclusion, we demonstrate the usefulness of our heuristic algorithms and post-processing techniques for designing large and low-cost communication networks

    The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways

    Get PDF
    BACKGROUND Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. RESULTS We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. CONCLUSIONS Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases

    Online Static Security Assessment of Power Systems Based on Lasso Algorithm

    Full text link
    As one important means of ensuring secure operation in a power system, the contingency selection and ranking methods need to be more rapid and accurate. A novel method-based least absolute shrinkage and selection operator (Lasso) algorithm is proposed in this paper to apply to online static security assessment (OSSA). The assessment is based on a security index, which is applied to select and screen contingencies. Firstly, the multi-step adaptive Lasso (MSA-Lasso) regression algorithm is introduced based on the regression algorithm, whose predictive performance has an advantage. Then, an OSSA module is proposed to evaluate and select contingencies in different load conditions. In addition, the Lasso algorithm is employed to predict the security index of each power system operation state with the consideration of bus voltages and power flows, according to Newton-Raphson load flow (NRLF) analysis in post-contingency states. Finally, the numerical results of applying the proposed approach to the IEEE 14-bus, 118-bus, and 300-bus test systems demonstrate the accuracy and rapidity of OSSA.Comment: Accepted by Applied Science

    Surface morphology and mechanical properties of conventional and selfadhesive resin cements after aqueous aging

    Get PDF
    The stable long-term performance of resin cement under oral environmental conditions is a crucial factor to obtain a satisfactory success of the allceramic dental restoration. Objective: This study aimed at evaluating and comparing the surface morphology and mechanical property of conventional and self-adhesive resin cement after aqueous aging. Materials and Methods: Disc-shaped specimens of 3 conventional (C1: Multilink N, C2: Duolink, C3: Nexus 3) and 3 self-adhesive (S1: Multilink Speed, S2: Biscem, S3: Maxcem) types of resin cements were subjected to irradiation. After 24 h, the Knoop microhardness of each resin cement was evaluated. The specimens were immersed separately in distilled water and maintained at 37°C. A total of 5 specimens of each resin cement were collected at the following time intervals of immersion: 1, 6, 12 and 18 months. The samples were used to evaluate the Knoop parameters of microhardness, sorption and solubility. The surface morphology of the specimens after 18 months of immersion was observed by scanning electron microscopy. The sorption and solubility data were analyzed by two-way ANOVA. The Knoop microhardness was tested by the ANOVA repeated measures (P<0.05). Results: The sorption and solubility parameters of C1 and S1 exhibited significant fluctuations during the aqueous aging. The hardness of the S1 and S2 specimens decreased significantly after an 18-month water immersion. The S1, S2 and S3 specimens indicated higher filler exposure and stripping and apparent pores and cracks compared to specimens C1, C2 and C3, respectively. Conclusion: The surface of selfadhesive resin cements is more susceptible to aqueous damage than that of the conventional resin cements

    On stochastic dynamic analysis and assessment of bistable structures

    Get PDF
    This paper investigates some basic issues on the stochastic dynamic analysis and assessment of bistable structures from an applications perspective, illustrated with a classical spring–mass–rod structure. A complete Lagrangian-description-based Monte Carlo simulation and an Eulerian-description-based Fokker–Planck equation analysis are implemented, respectively, to capture the evolution process of the physical response probability density function, with special focus on the dynamics under the statistical steady state condition. A comparison of these two methods outlines their capabilities. As a representative example, quantitative counting and statistical analysis of the number and amplitudes of snapping-through of the structure indicate that physical quantities for structural assessment may show certain statistical regularities under the statistical steady state condition, which can be utilized efficiently to reduce the efforts of structural assessment without loss of precision

    Effect of short-term exercise intervention on cardiovascular functions and quality of life of chronic heart failure patients: A meta-analysis

    Get PDF
    AbstractObjectiveThe purpose of this study was to comprehensively evaluate the effect of short-term exercise intervention on the cardiovascular functions and quality of life (QoL) of patients with chronic heart failure (CHF).MethodsThis meta-analysis was analyzed using RevMan5.3 and Stata 13.0. The parameters of cardiovascular functions and QoL were assessed. Weighted mean differences and their corresponding 95% confidence intervals (CIs) were computed for continuous variables.ResultsData from 2533 CHF patients enrolled in 28 published studies of randomized controlled trials (RCTs) were collated. There were significant differences in VO2 max prior to and after exercise intervention in CHF patients who are 50–55 years old (5 RCTs; 95% CI, −4.86 to −2.29; I2 = 50.5%), 60–65 years old (10 RCTs; 95% CI, −2.66 to −2.04; I2 = 0%), and 69–75 years old (5 RCTs; 95% CI, −1.88 to −0.34; I2 = 38.5%). VO2 max was significantly increased by aerobic exercise (9 RCTs; 95% CI, −3.45 to −1.92; I2 = 37.7%) and combined aerobic resistance exercise (4 RCTs; 95% CI, −4.41 to −0.26; I2 = 76.6%). There were significant differences in cardiac output (n = 303; 95% CI, −0.25 to −0.02; I2 = 12%) and QoL (n = 299; 95% CI, 3.19 to 9.70; I2 = 17%) prior to and after short-term exercise.ConclusionAerobic exercise and aerobic with resistance exercise can significantly improve the aerobic capacity of CHF patients, whereas resistance exercise cannot. The improvement in aerobic capacity caused by aerobic exercise and aerobic with resistance exercise decreases with age. Systolic blood pressure and ventricle structures and functions of CHF patients show no significant changes after the short-term exercise intervention

    CNV discovery for milk composition traits in dairy cattle using whole genome resequencing

    Get PDF
    General statistics of 487 differential CNVRs between high and low group based on UMD3.1. (XLSX 28 kb
    • …
    corecore